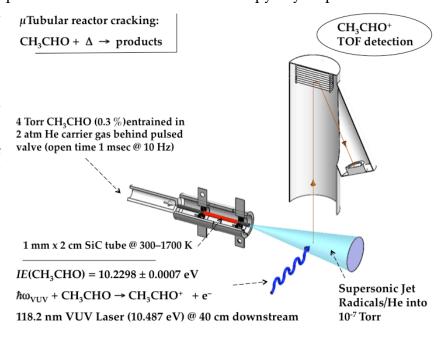
## Biomass Pyrolysis in a Heated Microtubular Reactor


AnGayle K. Vasiliou,<sup>1,3</sup> Krzysztof M. Piech,<sup>1</sup> Beth Reed,<sup>1</sup> Xu Zhang,<sup>2</sup> Mark R. Nimlos,<sup>3</sup> Musahid Ahmed,<sup>4</sup> Amir Golan,<sup>4</sup> Oleg Kostko,<sup>4</sup> David L. Osborn,<sup>5</sup> John W. Daily,<sup>6</sup> John F. Stanton,<sup>7</sup> and <u>G. Barney</u> Ellison\* <sup>1</sup>

- Department of Chemistry & Biochemistry University of Colorado Boulder, CO 80309-0215
- \* Corresponding author: <u>barney@jila.colorado.edu</u>
- Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive Pasadena, CA 91109-8099
- National Renewable Energy Laboratory 1617 Cole Blvd.
  Golden, CO 80401
- Chemical Sciences Division LBNL MS 6R-2100 Berkeley CA 94720

- Combustion Research Facility Sandia National Laboratories PO Box 969 MS 9055 Livermore, CA 94551-0969
- <sup>6</sup> Center for Combustion & Env. Research Department of Mechanical Engineering University of Colorado Boulder, CO 80309-0427
- Institute for Theoretical Chemistry Dept. Chemistry, University of Texas Austin, TX 78712

A heated SiC microtubular reactor has been developed to decompose biomass monomers such as CH<sub>3</sub>CHO, C<sub>6</sub>H<sub>5</sub>OH, C<sub>6</sub>H<sub>5</sub>OCH<sub>3</sub>, HOC<sub>6</sub>H<sub>4</sub>OCH<sub>3</sub>, C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>CH<sub>2</sub>OC<sub>6</sub>H<sub>5</sub>, and furan. The pyrolysis experiments are carried out by passing a dilute mixture of the organic substrate (roughly 0.1-1%) entrained in a stream of a buffer gas (either He or Ar) through a heated SiC reactor that is 2-3 cm long and 1 mm in diam. Common pressures in the reactor are 50-200 Torr and the SiC tube is heated in the range of 1200-1900 K. Typical transit times through the reactor are 50-200  $\mu$ sec after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10  $\mu$ Torr and all chemistry is quenched. The reactor has been deployed in pulsed and CW configurations. In Colorado a pulsed reactor is used because the pyrolysis products are

identified by photoionization mass spectroscopy with a 10 Hz YAG laser at  $\lambda_0 = 118.2$ nm or 10.487 eV. Separate experiments use matrix absorption infrared spectroscopy to identify the pyrolysis products and to confirm the assignments of the PIMS. In Calif. a CW reactor is used because a CW synchrotron is used as the light source for the PIMS. The pyrolysis of CH<sub>3</sub>CHO will be discussed. observe CH<sub>3</sub>CHO (+M) →  $CH_3 + H + CO + CH_2 = C = O$ ,  $CH_2$ =CHOH, HC= $CH + H_2O$ .

